Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.463
Filtrar
1.
Hum Cell ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656742

RESUMO

Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-ß, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-ß/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-ß/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-ß/Smad signaling.

2.
J Cardiothorac Surg ; 19(1): 265, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664788

RESUMO

BACKGROUND: Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS: Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS: H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION: METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.


Assuntos
Adenosina , Adenosina/análogos & derivados , Ferroptose , Metiltransferases , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Ferroptose/fisiologia , Ferroptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Adenosina/metabolismo , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664790

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Análise de Célula Única , Transcriptoma , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Animais , Perfilação da Expressão Gênica , Cromatina/metabolismo , Cromatina/genética , Camundongos Endogâmicos C57BL , Redes Reguladoras de Genes , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Masculino , RNA-Seq , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia
4.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
5.
Cell Stress Chaperones ; 29(3): 381-391, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582327

RESUMO

The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (P < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.

6.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658440

RESUMO

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Telomerase , Telômero , Telomerase/metabolismo , Telomerase/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Telômero/metabolismo , Encurtamento do Telômero , Linhagem Celular
7.
Cells ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667279

RESUMO

Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/ß-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.


Assuntos
Adesões Focais , Mecanotransdução Celular , Miócitos Cardíacos , Adesões Focais/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Matriz Extracelular/metabolismo
8.
Basic Res Cardiol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639887

RESUMO

Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.

9.
Environ Pollut ; 349: 123872, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604309

RESUMO

Recently, attention has been drawn to the adverse outcomes of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) on human health, but its cardiac toxicity has been relatively understudied. This work aims to investigate the effects of 6PPDQ on differentiated H9c2 cardiomyocytes. Our findings demonstrated that exposure to 6PPDQ altered cellular morphology and disrupted the expression of cardiac-specific markers. Significantly, 6PPDQ exposure led to cardiomyocyte senescence, characterized by elevated ß-Galactosidase activity, upregulation of cell cycle inhibitor, induction of DNA double-strand breaks, and remodeling of Lamin B1. Furthermore, 6PPDQ hindered autophagy flux by promoting the formation of autophagosomes while inhibiting the degradation of autolysosomes. Remarkably, restoration of autophagic flux using rapamycin counteracted 6PPDQ-induced cardiomyocyte senescence. Additionally, our study revealed that 6PPDQ significantly increased the ROS production. However, ROS scavenger effectively reduced the blockage of autophagic flux and cardiomyocyte senescence caused by 6PPDQ. Furthermore, we discovered that 6PPDQ activated the Aryl hydrocarbon receptor (AhR) signaling pathway. AhR antagonist was found to reverse the blockage of autophagy and alleviate cardiac senescence, while also reducing ROS levels in 6PPDQ-treated group. In conclusion, our research unveils that exposure to 6PPDQ induces ROS overproduction through AhR activation, leading to disruption of autophagy flux and ultimately contributing to cardiomyocyte senescence.

10.
Circ J ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644191

RESUMO

The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.

11.
JACC Case Rep ; 29(7): 102271, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645290

RESUMO

Severe degenerative mitral regurgitation (DMR) is one cardiac manifestation of the multiorgan metabolic enzyme disorder Anderson-Fabry Disease (AFD). Although DMR is normally managed surgically, many patients with AFD are unsuitable for this. We present the first case of mitral transcatheter edge-to-edge repair in a patient with AFD.

12.
Acta Pharm Sin B ; 14(4): 1693-1710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572108

RESUMO

Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.

13.
Physiol Rep ; 12(7): e15990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575554

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are rapidly gaining ground in the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) and acute myocardial infarction (AMI) by an unknown mechanism. Upregulation of Na+/H+ exchanger 1 (NHE1), SGLT1, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the diseased hearts was found to be attenuated by prolonged SGLT2i treatment. Unfortunately, dapagliflozin is not well understood as to how Na+/Ca2+ homeostasis is affected in cardiomyocytes. In this study, we aimed to investigate whether mechanical stretch in cardiomyocytes upregulate SGLT2, resulted to loss of Na+/Ca2+ homeostasis via ERK and eNOS signaling. AMI (+) and AMI (-) serum levels were estimated using ELISA assays of TGFß-1 or endoglin (CD105). Human cardiomyocyte cell line AC16 was subjected to different stresses: 5% mild and 25% aggressive, at 1 Hz for 24 h. Immunofluorescence assays were used to estimate troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 levels was performed for 5% (mild), and 25% elongation for 24 h. AMI (+) serum showed increased TGFß1 and CD105 compared to AMI (-) patients. In consistent, troponin I, CD105, SGLT1/2, eNOSS633 and ERK1/2T202/Y204 were upregulated after 25% of 24 h cyclic stretch. Dapagliflozin addition caused SGLT2 inhibition, which significantly decreased troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 under 25% cyclic stretching. In summary, SGLT2 may have sensed mechanical stretch in a way similar to cardiac overloading as in vivo. By blocking SGLT2 in stretched cardiomyocytes, the AMI biomarkers (CD105, troponin I and P-ERK) were decreased, potentially to rescue eNOS production to maintain normal cellular function. This discovery of CD105 and SGLT2 increase in mechanically stretched cardiomyocytes suggests that SGLT2 may conceive a novel role in direct or indirect sensing of mechanical stretch, prompting the possibility of an in vitro cardiac overloaded cell model, an alternative to animal heart model.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Animais , Endoglina/metabolismo , Insuficiência Cardíaca/metabolismo , Regulação para Cima , Transportador 2 de Glucose-Sódio/metabolismo , Troponina I/metabolismo , Volume Sistólico , Miócitos Cardíacos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38581629

RESUMO

Recent reports show miR-449b-5p reduces liver and renal ischemia/reperfusion (I/R) injury, but its effects on hypoxia-induced cardiomyocyte injury in ischemic heart disease are still unknown. In this study, AC16 human cardiomyocytes underwent hypoxic conditions for durations of 24, 48, and 72 h. We observed that miR-449b-5p expression was significantly downregulated in hypoxic AC16 cardiomyocytes. Elevating the levels of miR-449b-5p in these cells resulted in enhanced cell survival, diminished release of LDH, and a reduction in cell apoptosis and oxidative stress using CCK-8, LDH assays, flow cytometry, TUNEL staining, and various commercial kits. Conversely, reducing miR-449b-5p levels resulted in the opposite effects. Through bioinformatics analysis and luciferase reporter assays, BCL2-like 13 (BCL2L13) was determined to be a direct target of miR-449b-5p. Inhibiting BCL2L13 greatly inhibited hypoxia-induced cell viability loss, LDH release, cell apoptosis, and excessive production of oxidative stress, whereas increasing BCL2L13 negated miR-449b-5p's protective impact in hypoxic AC16 cardiomyocytes. Additionally, miR-449b-5p elevated the levels of the proteins p-PI3K, p-AKT, and Bcl-2, while decreasing Bax expression in hypoxic AC16 cardiomyocytes by targeting BCL2L13. In summary, the research indicates that the protective effects of miR-449b-5p are facilitated through the activation of the PI3K/AKT pathway, which promotes cell survival, and by targeting BCL2L13, which inhibits apoptosis, offering a potential therapeutic strategy for ischemic heart disease by mitigating hypoxia-induced cardiomyocyte injury.

15.
Biol Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38651266

RESUMO

Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.

16.
J Bioenerg Biomembr ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613636

RESUMO

Acute myocardial infarction (AMI) is one of the most prevalent cardiovascular diseases, accounting for a high incidence rate and high mortality worldwide. Hypoxia/reoxygenation (H/R)-induced myocardial cell injury is the main cause of AMI. Several studies have shown that circular RNA contributes significantly to the pathogenesis of AMI. Here, we established an AMI mouse model to investigate the effect of circDiaph3 in cardiac function and explore the functional role of circDiaph3 in H/R-induced cardiomyocyte injury and its molecular mechanism. Bioinformatics tool and RT-qPCR techniques were applied to detect circDiaph3 expression in human patient samples, heart tissues of AMI mice, and H/R-induced H9C2 cells. CCK-8 was used to examine cell viability, while annexin-V/PI staining was used to assess cell apoptosis. Myocardial reactive oxygen species (ROS) levels were detected by immunofluorescence. Western blot was used to detect the protein expression of anti-apoptotic Bcl-2 while pro-apoptotic Bax and cleaved-Caspase-3. Furthermore, ELISA was used to detect inflammatory cytokines production. While bioinformatics tool and RNA pull-down assay were used to verify the interaction between circDiaph3 and miR-338-3p. We found that circDiaph3 expression was high in AMI patients and mice, as well as in H/R-treated H9C2 cells. CircDiaph3 silencing ameliorated apoptosis and inflammatory response of cardiomyocytes in vivo. Moreover, the knockdown of cirDiaph3 mitigated H/R-induced apoptosis and the release of inflammatory mediators like IL-1ß, IL-6, and TNF-α in H9C2 cells. Mechanistically, circDiaph3 induced cell apoptosis and inflammatory responses in H/R-treated H9C2 cells by sponging miR-338-3p. Overexpressing miR-338-3p in H/R-treated cells prominently reversed circDiaph3-induced effects. Notably, miR-338-3p inhibited SRSF1 expression in H/R-treated H9C2 cells. While overexpressing SRSF1 abrogated miR-338-3p-mediated alleviation of apoptosis and inflammation after H/R treatment. To summarize, circDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through the miR-338-3p/SRSF1 axis. These findings suggest that the circDiaph3/miR-338-3pp/SRSF1 axis could be a potential therapeutic target for treating H/R-induced myocardial injury.

17.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612904

RESUMO

Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and ß subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Integrinas , Células Endoteliais , Membrana Celular
18.
Iran J Basic Med Sci ; 27(6): 755-760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645496

RESUMO

Objectives: MicroRNAs (miRNAs) are small non-coding RNAs that function in all biological processes. Recent findings suggest that exosomes, which are small vesicles abundantly secreted by various cell types, can transport miRNAs to target cells. Here, we elucidated the effect of miRNA-loaded exosomes on lipopolysaccharide (LPS)-induced inflammation in H9c2 cardiomyocytes. Materials and Methods: Exosomes were isolated from mesenchymal stem cells (MSC) and loaded with miR-412-5p. Additionally, the effect of the miR-412-5p-loaded exosomes on LPS-induced inflammation in H9c2 cardiomyocytes was evaluated by assessing the levels of nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2). The expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inflammatory cytokines, and mitogen-activated protein kinase (MAPK) signaling factors was evaluated using reverse transcription-quantitative PCR and western blotting. Results: miR-412-5p-loaded exosomes inhibited LPS-induced secretion of inflammatory mediators (NO, PGE2, and ROS), pro-inflammatory cytokines (IL-1ß and IL-6), and COX-2 and iNOS expression. Additionally, miR-412-5p-loaded exosomes significantly decreased the expression of MAPK signaling molecules, including p-extracellular signal-regulated kinase (ERK), p-p38, and p-Jun kinase (JNK), in H9c2 cardiomyocytes. Conclusion: These findings showed that miR-412-5p-loaded exosomes ameliorated LPS-induced inflammation in H9c2 cardiomyocytes by inhibiting COX-2 and iNOS expression, inflammatory mediators, and pro-inflammatory cytokines via the MAPK pathway. The findings indicate that miR-412-5p-loaded exosomes may be effective for the prevention of myocardial injury.

19.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588611

RESUMO

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Assuntos
Chaperonina 60 , Cardiopatias Congênitas , Animais , Camundongos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatias Congênitas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo
20.
Nat Prod Res ; : 1-28, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586947

RESUMO

Natural products (NPs) are endless sources of compounds for fighting against several pathologies. Many dysfunctions, including cardiovascular disorders, such as cardiac arrhythmias have their modes of action regulation of the concentration of electrolytes inside and outside the cell targeting ion channels. Here, we highlight plant extracts and secondary metabolites' effects on the treatment of related cardiac pathologies on hERG, Nav, and Cav of cardiomyocytes. The natural product's pharmacology of expressed receptors like alpha-adrenergic receptors causes an influx of Ca2+ ions through receptor-operated Ca2+ ion channels. We also examine the NPs associated with cardiac contractions such as myocardial contractility by reducing the L-type calcium current and decreasing the intracellular calcium transient, inhibiting the K+ induced contractions, decreasing amplitude of myocyte shortening and showed negative ionotropic and chronotropic effects due to decreasing cytosolic Ca2+. We examine whether the NPs block potassium channels, particular the hERG channel and regulatory effects on Nav1.7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...